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Abstract. In this paper, we use a characterization of the mutual multifrac-
tal Hausdorff dimension in terms of auxiliary measures to investigate the
projections of measures with small supports.

1. Introduction

Dimensional properties of projections of sets and measures have been inves-
tigated for decades. The first significant work in this area was the result of
Marstrand [16], to which the Hausdorff dimension of a planar set is preserved
under typical orthogonal projections. This result was later generalized to higher
dimensions by Kaufman [14] and Mattila [17] and they obtain similar results for
the Hausdorff dimension of a measure. Falconer and Mattila [12] and Falconer and
Howroyd [10, 11] have proved that the packing dimension of the projected set or
measure are the same for almost all projections.

O’Neil [20] has compared the generalized Hausdorff and packing dimensions of
a subset E ⊆ Rn with respect to a measure µ with those of their projections ontom-
dimensional subspaces. In [4, 28], the authors studied the multifractal analysis of
the orthogonal projections on m-dimensional linear subspaces of singular measures
on Rn satisfying the multifractal formalism. These results were later generalized
by Selmi et al. in [7, 8, 25, 27, 35, 37].

Recently, mutual (mixed) multifractal spectra have generated an enormous
interest in the mathematical literature. Many authors were interested in mutual
multifractal spectra and their applications [3, 6, 18, 38, 39]. Previously, only the
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scaling behaviour
lim
r→0

logµ(B(x, r))
log r

of a single measure µ has been investigated (see for example [4, 20, 22]). However,
mutual multifractal analysis of two Borel probability measures µ and ν on Rn
investigates the simultaneous scaling behaviour

lim
r→0

logµ(B(x, r))
log r , lim

r→0

log ν(B(x, r))
log r .

It combines local characteristics which depend simultaneously on various different
aspects of the underlying dynamical system and provides the basis for a signifi-
cantly better understanding of the underlying dynamics. Olsen [23] conjectured
a mutual multifractal formalism which links the mutual spectrum to the Legendre
transform of mixed Rényi dimensions. General upper bound has been obtained
and proved to be an equality if both measures are self-similar with same contract-
ing similarities. Later, in [18], a mixed multifractal formalism associated with the
mixed multifractal generalizations of Hausdorff and packing measures and dimen-
sions is proved in some cases based on a generalization of the well known large
deviation formalism.

In [8, 9, 30, 36], the authors studied the mutual multifractal analysis of the
orthogonal projections on m-dimensional linear subspaces. More specifically, they
investigated the relationship between fµ,ν(α, β) and fµV ,νV (α, β), where

fµ,ν(α, β) = dimζ(Bµ,ν(α, β)),

Bµ,ν(α, β) =
{
x : lim

r→0

logµ(B(x, r))
log r = α, lim

r→0

log ν(B(x, r))
log r = β

}
and ζ ∈ {H,P}. Here dimH and dimP denote, respectively, the Hausdorff dimen-
sion and the packing dimension. In addition, if we write for γ ≥ 0,

Eµ,ν(γ) =
{
x ∈ suppµ ∩ supp ν : lim

r→0

log(µ(B(x, r)))
log(ν(B(x, r)) = γ

}
.

Then, ⋃
(α,β)∈R+×R∗

+,
α
β=γ

Bµ,ν(α, β) ⊆ Eµ,ν(γ).

The latter union is composed by an uncountable number of pairwise disjoint
nonempty sets. Then, the Hausdorff and packing dimensions of Eµ,ν(γ) are fully
carried by some subset Bµ,ν

(
α, β

)
, for which the Hausdorff dimension of is eval-

uated by the Legendre transform of the multifractal Hausdorff function (see for
example [1, 2, 5, 15, 29, 30, 31, 33, 34]). Also, Selmi et al. investigated the projec-
tion properties of the ν-Hausdorff, and the ν-packing dimensions of Eµ,ν(γ) in [7].
They derived global bounds on the relative multifractal dimensions of a projection
of a measure in terms of its original relative multifractal dimensions. It is more
difficult to obtain a lower and upper bound for the dimension of the set EµV ,νV (γ),
where V is a linear subspace of Rn.
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As a continuity of these researches, we will start by introducing the mutual
multifractal Hausdorff measure which differs slightly from those introduced in
[18, 19], especially in [38, 39]. Also, we use a characterization of the mutual
multifractal Hausdorff dimension in terms of auxiliary measures. We treat the
mutual multifractal Hausdorff dimension of a Borel set using a characterization
in terms of appropriately formed energy integrals. In particular, we obtain an
inequality relating the mutual multifractal Hausdorff dimension of the original
measure to those of its projection.

2. Mutual multifractal Hausdorff measure and function

Our main reason for modifying Svetova’s definition is to allow us to prove
results for non necessary doubling measures. One main cause and motivation is
the fact that such characteristics are not in fact preserved under projections. Let µ,
ν be two compactly supported probability measures on Rn with common support
equal to K, E ⊆ K and δ > 0. For q = (q, t) ∈ R2, s ∈ R and µ = (µ, ν), we
define the mutual Hausdorff measure,

H q,s
µ,δ (E) = inf

{∑
i

µ(B(xi, 3ri))qν(B(xi, 3ri))t rsi
}
,

where the infinimum is taken over all δ-coverings of E, and

H q,s
µ (E) = sup

δ>0
H q,s

µ,δ (E).

Notice that the centers of the balls in the admissible covers need not be in the set
E. This differs from the definition of Svetova [38, 39] and allows us to apply the
Method II of Rogers [24] more easily. For q ≤ 0 and t ≤ 0 it is straightforward
to verify that this measure is equivalent to Svetova’s mutual multifractal Haus-
dorff measures and when µ and ν satisfy a global doubling condition, the mutual
multifractal Hausdorff measures are equivalent for other cases. We observe also
that H q,s

µ -measure is a Method II measure [24, Theorems 15 and 23] and that we
would obtain the same measures if we worked with covers by open balls instead.

The function H q,s
µ is σ-subadditive and increasing, which induces a measure

on Borel subsets of Rn. It assigns a dimension to each subset E of Rn denoted by

bq
µ(E) = sup{s ∈ R : H q,s

µ (E) =∞} = inf{s ∈ R : H q,s
µ (E) = 0}.

Then, we define the mutual multifractal function bµ : R2 → [−∞,+∞] by

bµ(q) = bq
µ(K).

Remark 2.1
In the special case where q = 0 or t = 0, the mutual multifractal function bµ(q)
is strictly related to O’Neil’s multifractal function [20]. The function bµ(q) is an
obvious multifractal analogue of the Hausdorff dimension dimH(K) of K, i.e. in
the special case when q = (0, 0), we have bµ(q) = dimH(K).
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3. Main result

Let m be an integer with 0 < m < n and Gn,m the Grassmannian manifold
of all m-dimensional linear subspaces of Rn. Denote by γn,m the invariant Haar
measure on Gn,m such that γn,m(Gn,m) = 1. For V ∈ Gn,m, we define the projec-
tion map πV : Rn → V as the usual orthogonal projection onto V . Then, the set
{πV , V ∈ Gn,m} is compact in the space of all linear maps from Rn to Rm and the
identification of V with πV induces a compact topology for Gn,m. Also, for a Borel
probability measure ν with compact support supp ν ⊂ Rn and for V ∈ Gn,m, we
denote by νV , the projection of ν onto V , i.e.

νV (A) = ν ◦ π−1
V (A) for all A ⊆ V.

Since ν is compactly supported and supp νV = πV (supp ν) for all V ∈ Gn,m,
then, for any continuous function f : V → R, we have∫

V

fdνV =
∫
f(πV (x))dν(x),

whenever these integrals exist.
In order to proceed in our investigation of the behaviour of µ under projection

we need to introduce an assumption on the structure of its support: we need to
be able to assume the existence of a uniform measure with a support containing
the support of µ.

Definition 3.1
Let E ⊆ Rn and 0 < s < +∞. We say that E is s-Ahlfors regular if it is closed
and if there exists a Borel measure ν on Rn and a constant 1 ≤ CE < +∞, such
that ν(E) > 0 and

C−1
E rs ≤ ν(B(x, r)) ≤ CErs for all x ∈ E and 0 < r ≤ 1.

Remark 3.1
We observe that Rn is n-Ahlfors regular and any m-dimensional subspace V is
m-Ahlfors regular. It is easy to see that an s-Ahlfors regular set has packing
dimension less than or equal to s.

The reason for introducing this notion is that it allows us to derive growth
estimates on measures supported on Ahlfors regular sets. Following the method
in [11, 13, 20] it is now straightforward to show that no measure can have too
many points where the measure of a ball grows too quickly. The main use of this
method is that it allows us to estimate, for ν supported on an s-Ahlfors regular
set where s ≤ m, the value of

∫
V
νV (B(xV , r))dγn,m from above by ν(B(x, r)).

In the following theorem, we concentrate on investigating the behaviour of the
mutual multifractal dimension of a projection of measures in terms of the original
mutual multifractal dimension of E ⊆ K such that K is a s-Ahlfors regular set.
The approach we use here was first used by Falconer and O’Neil in [13] and further
developed by O’Neil in [20]. Throughout this paper, we denote µV = (µV , νV ).
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Theorem 3.1
Fix 0 < m < n, q ∈ R+ × R+ and 0 < s ≤ m such that K is s-Ahlfors regular.
We have for all compact set E ⊆ K with µ(E) > 0 and ν(E) > 0 and γn,m-almost
every m-dimensional subspace V ,

bq
µV

(πV (E)) ≥ bq
µ(E).

Remark 3.2
It is straightforward that any self-similar compact set which satisfies a strong
separation is automatically s-Ahlfors regular for s equal to its packing dimension.
For example, if µ is a self-similar (quasi self-similar) measure on Rn with support
K of packing dimension s ≤ m, then K is s-Ahlfors regular (for more details, see
[20, 21]).

4. Proof of the main result

We present the tools, as well as the intermediate results, which will be used
in the proof of our main result. We first use a characterization of the mutual
multifractal Hausdorff dimension in terms of auxiliary measures. We treat the
mutual multifractal Hausdorff dimension of a set E using a characterization of
bq

µ(E) in terms of appropriate energy integrals. Moreover, we obtain an inequality
relating the mutual multifractal Hausdorff dimension of the original measure to
the one of its projection.

4.1. Some characterizations of the mutual multifractal function

Denote by P(E) the family of finite Borel measures with compact support
contained in E ⊆ Rn. For compactly supported Borel probability measures µ, ν
on Rn with common support K and a set E ⊆ K with µ(E) > 0 and ν(E) > 0,
we define

Pq,s
µ (E) =

{
θ ∈P(E) : for 0 < r ≤ 1, θ(B(x, r)) ≤ fq,s

µ (x, r) for θ-a.e. x
}
,

where fq,s
µ (x, r) = µ(B(x, 3r))qν(B(x, 3r))trs.

The next theorem is essentially a restatement of [20, Theorem 5.1] in a general
case.

Theorem 4.1
For a compact set E ⊆ K with µ(E) > 0 and ν(E) > 0, and q ∈ R2, we have

bq
µ(E) = sup

{
s ∈ R : ∃θ ∈ Pq,s

µ (E), θ(E) > 0
}
.

Proof. See [20, Theorem 5.1] for the key ideas needed to prove this theorem.

Remark 4.1
For all q ∈ R2, we define the (q,µ)-upper density of order s of θ at x by

dq,s
µ (θ, x) = lim sup

r→0

θ(B(x, r))
µ(B(x, 3r))qν(B(x, 3r))trs
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and the (q,µ)-local multifractal Hausdorff dimension, bq
µ(θ, x), of a measure θ at

a point x by

bq
µ(θ, x) = lim inf

r→0

log θ(B(x, r))− q logµ(B(x, 3r))− t log ν(B(x, 3r))
log r

= sup
{
s ∈ R : dq,s

µ (θ, x) = 0
}
.

Similar techniques to those used in [26, 27, 32] allow us to reformulate Theorem
4.1, as

bq
µ(E) = sup

{
ess inf
x∈E

bq
µ(θ, x) : 0 6= θ ∈P(E)

}
= sup

{
bq

µ(θ) : 0 6= θ ∈P(E)
}
,

(1)

where the essential bounds being related to the measure θ, and

bq
µ(θ) = sup

{
s ∈ R : bq

µ(θ, x) ≥ s for θ-a.e. x
}
.

It is now possible to characterize bµ(q) in terms of appropriate energy integrals.
We easily obtain the following characterization

bµ(q) = sup
{
s ∈ R : ∃0 6= θ ∈P(K), such as Is,qθ (µ) < +∞

}
,

where
Is,qθ (µ) =

∫∫ (
fq,s

µ (x, |y − x|)
)−1

dθ(y)dθ(x).

4.2. Proof of Theorem 3.1

Fix 0 < m < n and suppose that ν is a Borel probability measure with
supp ν ⊂ B(0, 1). We begin by investigating the behaviour of the νV -measure
of a ball in V for V ∈ Gn,m and relate this to local properties of the measure
ν. This leads us to introduce a kernel function φmr : Rn\{0} → (0,∞) by setting
φmr (x) = min{1, rm|x|−m}. The convolution product of φmr and the measure ν is
therefore given by

φmr ∗ ν(x) =
∫

min
{

1, rm|x− y|−m
}
dν(y).

So, integrating by parts and applying next spherical coordinates (see [13]), we
obtain

φmr ∗ ν(x) = mrm
∫ +∞

r

u−m−1ν(B(x, u))du

and
φm2r ∗ ν(x) ≤ 2mφmr ∗ ν(x). (2)

We observe for all V ∈ Gn,m that

ν(B(x, r)) ≤ φmr ∗ ν(x) ≤ φmr ∗ νV (xV ) (3)

and
ν(B(x, r)) ≤ νV (B(xV , r)) ≤ φmr ∗ νV (xV ).
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We present the following technical lemma, which will be used in the proof of
our main result.

Lemma 4.1 ([20, Lemma 5.8])
Fix 0 < m ≤ n. Suppose that ν is a compactly supported, finite Borel measure on
Rn with support contained in an s-Ahlfors regular set for some 0 < s ≤ m. Then
for all ε > 0 and ν-a.e. x there exist r0 > 0 and c > 0 such that for 0 < r ≤ r0,
we have

φmr ∗ ν(x) ≤ cr−εν(B(x, r)) (4)

and ∫
V ∈Gn,m

φmr ∗ νV (xV )dγn,m(V ) ≤ cr−εν(B(x, r)).

Theorem 3.1 is a consequence of the following propositions.

Proposition 4.1
For compact sets E ⊆ K with µ(E) > 0 and ν(E) > 0, and q ∈ R2, we have for
all m-dimensional subspaces V ,

bq
µV

(πV (E)) = sup
{
bq

µV
(θV ) : θ ∈P(E), θ(E) > 0

}
.

Proof. This result follows immediately from (1) together with the observation that
a finite Borel measure θ on πV (E) may be pulled back to give a finite Borel measure
on E.

Proposition 4.2
Let 0 < m < n, q ∈ R+ × R+ and 0 < s ≤ m such that K is s-Ahlfors regular.
For all finite Borel measures θ with support contained in K and for almost every
m-dimensional subspaces V we have

bq
µV

(θV ) ≥ bq
µ(θ).

Proof. Let s < bq
µ(θ) to ensure that for θ-a.e. x, dq,s

µ (θ, x) = 0. We will prove for
γn,m-almost every m-dimensional subspace V the equality

dq,s
µV

(θV , xV ) = lim sup
r→0

θV (B(xV , r))
µV (B(xV , 3r))qνV (B(xV , 3r))trs

= 0

for θ-a.e. x which yields the result. For any ε > 0 and ξ > 0, let γ = min(1, 2s−2ε),
we denote for all k ∈ N,

Gq,s
k (x) =

{
V ∈ Gn,m : φm2−(k+1) ∗ θV (xV ) > χµV

(
B
(
xV ,

3
2(k+1)

))q
× νV

(
B
(
xV ,

3
2(k+1)

))t}
,

where χ = 2mγξ
2(k+1)(s−2ε) . By recalling (2) we deduce that for all k ∈ N,
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{
V ∈ Gn,m : ∃r ∈]2−(k+1), 2−k], φmr ∗ θV (xV ) >

ξ

r2ε−sµV (B(xV , 3r))qνV (B(xV , 3r))t
}
⊆ Gq,s

k (x).

Whenever
∞∑
k=1

γn,m
(
Gq,s
k (x)

)
< +∞,

then Borel-Cantelli lemma yields that with probability 1 only a finite number of
the events Gq,s

k (x) can occur, i.e.

lim sup
r→0

φmr ∗ θV (xV )
µV (B(xV , 3r))qνV (B(xV , 3r))trs−2ε = 0

for almost every m-dimensional subspaces V . In view of the monotonicity of the
(q,µ)-upper density in s, the exceptional set may be chosen the same for all s under
consideration. Then Fubini’s theorem with respect to the measure θ × γn,m and
the inequalities (3) and (4) yield, for γn,m-almost every m-dimensional subspace
V and θ-a.e. x that

dq,s−2ε
µV

(θV , xV ) = lim sup
r→0

φmr ∗ θV (xV )
µV (B(xV , 3r))qνV (B(xV , 3r))trs−2ε = 0.

Choosing a sequence εi → 0, we conclude that for γn,m-almost everym-dimensional
subspace V and θ-a.e. x,

bq
µV

(θV , xV ) ≥ s.

Consequently, we have for γn,m-almost every m-dimensional subspace V ,

bq
µV

(θV ) ≥ s.

In order to prove the convergence of the above series, observe that from Lemma
4.1, for all ε > 0 and θ-a.e. x there is a constant c > 0 and δ > 0 such that for all
0 < r ≤ δ, ∫

V ∈Gn,m
φmr ∗ θV (xV )dγn,m ≤ c r−εθ(B(x, r)). (5)

For 0 < r ≤ δ and since q, t ≥ 0, we have∫
V ∈Gn,m

φmr ∗ θV (xV )
µV (B(xV , 3r))qνV (B(xV , 3r))trs−2ε dγn,m

≤ c θ(B(x, r))
µ(B(x, 3r))qν(B(x, 3r))trs−ε .

Thus by choosing 0 < δ0 < δ such that for 0 < r ≤ δ0,

θ(B(x, r))
µ(B(x, 3r))qν(B(x, 3r))trs ≤ 1,
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we may estimate, from Markov’s inequality and (5), that for any r ≤ δ0 and ξ > 0,

γn,m
({
V ∈ Gn,m : φmr ∗ θV (xV ) > ξµV (B(xV , 3r))qνV (B(xV , 3r))trs−2ε})
≤ r2ε−s

ξµ(B(x, 3r))qν(B(x, 3r))t

∫
V ∈Gn,m

φmr ∗ θV (xV )dγn,m ≤
c

ξ
rε.

Choosing r in ]2−(k+1), 2−k], we get the result.

Remark 4.2
Fix 0 < m < n, q ∈ R+ × R+ and 0 < s ≤ m such that K is s-Ahlfors regular.
We have for γn,m-almost every m-dimensional subspace V ,

bµV (q) ≥ bµ(q).
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