
Ann. Univ. Paedagog. Crac. Stud. Math. 22 (2023), 33-47
DOI: 10.2478/aupcsm-2023-0004

FOLIA 385

Annales Universitatis Paedagogicae Cracoviensis
Studia Mathematica 22 (2023)

Bharat Bhushan, Gurninder S. Sandhu and Deepak Kumar
Centrally-extended generalized Jordan derivations
in rings

Abstract. In this article, we introduce the notion of centrally-extended gen-
eralized Jordan derivations and characterize the structure of a prime ring
(resp. ∗-prime ring) R that admits a centrally-extended generalized Jordan
derivation F satisfying [F (x), x] ∈ Z(R) (resp. [F (x), x∗] ∈ Z(R)) for all
x ∈ R.

1. Introduction

Throughout this study R is an associative ring with center Z(R). Let Qml(R)
be the maximal left ring quotients of R, the center of Qml(R) is denoted by C
which is known as the extended centroid of R. Recall that C is a field in case R is
prime ring. For any x, y in R, the commutator (resp. anti-commutator) of x, y is
defined as [x, y] = xy − yx (resp. x ◦ y = xy + yx). In a prime ring, if there exist
a, b in R such that aRb = (0), then either a = 0 or b = 0, whereas in semiprime
ring, if aRa = (0), then a = 0. Clearly, every prime ring is semiprime ring but the
converse need not be true, for instance Z× Z where Z is a ring of integers.

For any n in Z+, R is called n-torsion free if nx = 0 for all x ∈ R, implies
x = 0. A mapping ϕ : R → R is said to be centralizing on a subset S of R,
if [ϕ(x), x] ∈ Z(R) for all x ∈ S. In particular, ϕ is called commuting on S if
[ϕ(x), x] = 0 for all x ∈ S. An anti-automorphism ’∗’ of R is called involution if
(x∗)∗ = x for all x ∈ R. If R is a prime ring with involution ’∗’ then ’∗’ can be
extended to central closure of R, that is RC + C, [16].
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An element x of a ring with involution ’∗’ is symmetric if x∗ = x and is skew
symmetric if x∗ = −x. The set of symmetric elements in R is denoted by H(R)
whereas the set of skew symmetric elements denoted by S(R). Note that, if R is 2-
torsion free ring, then for each x in R, we have a unique representation 2x = h+k,
where h ∈ H(R) and k ∈ S(R).

Motivated by the definition of centralizing (resp. commuting) mapping, Ali and
Dar [1] introduced ∗-centralizing (resp. ∗-commuting) mapping, which is defined
as follows: A mapping ϕ is called ∗-centralizing (resp. ∗-commuting) on a set S if
[ϕ(x), x∗] ∈ Z(R) (resp. [ϕ(x), x∗] = 0) for all x ∈ S.

Recall that an additive self-mapping d of R is known as a derivation if d(xy) =
d(x)y + xd(y) for all x, y ∈ R and is known as Jordan derivation if d(x2) =
d(x)x+xd(x) for all x ∈ R. It is straightforward that every derivation is a Jordan
derivation but the converse is not always true.

Example 1.1 ([2, Example 3.2.1])
Let R be a ring and a ∈ R such that xax = 0 for all x ∈ R and xay 6= 0 for some
y 6= x in R. Define a map d : R → R by d(x) = ax. Then, it is very easy to see
that d is a Jordan derivation on R but not a derivation on R.

It can be seen that δ is a Jordan derivation but not a derivation. Moreover, the
question "when Jordan derivation is a derivation?" raised by Herstein [12] caused
significant work existed in the literature of Jordan mappings in rings (see [6], [10],
[12], [13]). In 1991, Bres̆ar [7] introduced the notion of generalized derivation.
Accordingly, a generalized derivation F : R → R is an additive mapping which is
uniquely determined by a derivation d such that F (xy) = F (x)y + xd(y) for all
x, y ∈ R. In 2003, Jing and Lu [13] introduced the notion of generalized Jordan
derivation, which is an additive mapping F : R→ R with associated Jordan deriva-
tion d : R → R such that F (x2) = F (x)x + xd(x) for all x ∈ R, and proved that
in a 2-torsion free prime ring every generalized Jordan derivation is a generalized
derivation.

A mapping δ : R → R is called centrally extended derivation if δ(x + y) −
δ(x) − δ(y) ∈ Z(R) and δ(xy) − δ(x)y − xδ(y) ∈ Z(R) for all x, y ∈ R. Bell
and Daif [4] extended the notion of derivation by introducing centrally extended
derivations and discussed their existence in rings. Very recently, we [5] introduced
a more general map than CE-derivation, called CE-Jordan derivation, defined as
δ(x+y)− δ(x)− δ(y) ∈ Z(R) and δ(x◦y)− δ(x)◦y−x◦ δ(y) ∈ Z(R) for all x, y ∈
R. In this article, we extend CE-Jordan derivations to CE-generalized Jordan
derivations in rings as follow: A mapping F : R → R is called CE-generalized
Jordan derivation constrained with CE-Jordan derivation, if

F (x+ y)− F (x)− F (y) ∈ Z(R), (A)
F (x ◦ y)− F (x)y − F (y)x− xδ(y)− yδ(x) ∈ Z(R) (B)

for all x, y ∈ R.
The main objective of this paper is to investigate the structure of a non-

commutative prime ring (resp. ∗-prime ring) R involving CE-generalized Jordan
derivation F and satisfying [F (x), x] ∈ Z(R) (resp. [F (x), x∗] ∈ Z(R)). More
specifically, we prove the following results:
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Theorem 1.2
Let R be a 2-torsion free noncommutative prime ring and F : R → R a CE-
generalized Jordan derivation constrained with CE-Jordan derivation δ. If F is
centralizing on R, then R is an order in a central simple algebra of dimension at
most 4 over its center or F (x) = λx, where λ ∈ C.

Theorem 1.3
Let R be a 2-torsion free noncommutative prime ring and F : R → R a CE-
generalized Jordan derivation constrained with a CE-Jordan derivation δ. If F is
∗-centralizing on R, then R is an order in a central simple algebra of dimension
at most 4 over its center or F = 0.

2. Preliminaries

We shall denote the standard identity in four non commuting variables x1, x2,
x3, x4 by s4, which is defined as follows

s4(x1, x2, x3, x4) =
∑
σ∈S4

(−1)σxσ(1)xσ(2)xσ(3)xσ(4),

where S4 is the symmetric group of degree 4 and (−1)σ is the sign of permutation
σ ∈ S4.

Now we give some results from the literature that shall be used in order to
develop the main results.

Lemma 2.1 ([1, Lemma 2.2])
Let R be a 2-torsion free semiprime ring with involution ’∗’. If an additive mapping
f of R into itself such that [f(x), x∗] ∈ Z(R) for all x ∈ R, then [f(x), x∗] = 0 for
all x ∈ R.

Lemma 2.2 ([3, Proposition 2.1.7])
Let R be a prime ring, Qmr(R) be the maximal right ring of quotients of R and
D be the set of all right dense ideals of R. Then for all q ∈ Qmr(R), there exists
J ∈ D such that qJ ⊆ R.

Lemma 2.3 ([5, Lemma 4])
Let R be a 2-torsion free ring with no nonzero central ideal. If δ is a CE-Jordan
derivation of R, then δ is additive.

Lemma 2.4 ([5, Theorem 3.6])
Let R be a 2-torsion free noncommutative prime ring with involution ’∗’ that admits
a CE-Jordan derivation δ : R→ R such that [δ(x), x] ∈ Z(R) for all x ∈ R. Then
either δ = 0 or R is an order in a central simple algebra of dimension at most 4
over its center.

Lemma 2.5 ([8, Lemma 1])
Let R be a prime ring with C its extended centroid. Then the following assertions
are equivalent:

(i) dimC(RC) ≤ 4.
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(ii) R satisfies s4.

(iii) R is commutative or R embeds into M2(F ), for a field F .

(iv) R is algebraic of bounded degree 2 over C.

(v) R satisfies [[x2, y], [x, y]].

Lemma 2.6 ([9, Proposition 3.1])
Let R be a 2-torsion free semiprime ring and U be a Jordan subring of R. If an
additive mapping f : R→ R is centralizing on U , then f is commuting on U .

Lemma 2.7 ([9, Theorem 3.2])
Let R be a prime ring. If an additive mapping f : R → R is commuting on R,
then there exists λ ∈ C and an additive σ : R → C, such that F (x) = λx + σ(x)
for all x ∈ R.

Lemma 2.8 ([11, Theorem])
Let R be a prime ring of characteristic 6=2 with right quotient ring U and extended
centroid C, F 6= 0 a generalized derivation of R, L a non-central Lie ideal of R
and n ≥ 1. If [F (u), u]n = 0, for all u ∈ L, then there exists an element a λ ∈ C
such that F (x) = λx, for all x ∈ R, unless when R satisfies s4 and there exists an
element b ∈ U such that F (x) = bx+ xb, for all x ∈ R.

Lemma 2.9 ([13, Theorem 2.5])
Let R be a 2-torsion free prime ring, then every generalized Jordan derivation on
R is a generalized derivation.

Lemma 2.10 ([14, Theorem 3])
Every generalized derivation g on a dense right ideal of R can be extended to
Qml(R) and assumes the form g(x) = ax + δ(x) for some a ∈ Qml(R) and a
derivation δ on Qml(R).

Lemma 2.11 ([15, Theorem 1])
Let R be a prime ring with involution ’∗’ and center Z(R). If d is a nonzero
derivation such that [d(x), x] ∈ Z(R) for all x ∈ H(R), then R satisfies s4.

Lemma 2.12 ([15, Theorem 3])
Let R be a prime ring with involution ’∗’ and center Z(R). If n is a fixed natural
number such that xn ∈ Z(R) for all x ∈ H(R), then R satisfies s4.

Lemma 2.13 ([15, Theorem 6])
Let R be a prime ring with involution ’∗’ and center Z(R). If d is a nonzero
derivation on R such that d(x)x + xd(x) ∈ Z(R) for all x ∈ H(R), then R satis-
fies s4.

Lemma 2.14 ([15, Theorem 7])
Let R be a prime ring with involution ’∗’ and center Z(R). If d is a nonzero
derivation on R such that d(x)x + xd(x) ∈ Z(R) for all x ∈ S(R), then R satis-
fies s4.
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3. Proofs of the Main Results

Proposition 3.1
Let R be a 2-torsion free ring with no nonzero central ideal. If F is a CE-
generalized Jordan derivation constrained with a CE-Jordan derivation of R, then
F is additive.

Proof. Let F be a CE-generalized Jordan derivation. In view of condition (A),
for any elements x, y, z ∈ R, it follows that

F (x+ y) = F (x) + F (y) + cF (x,y,+), (1)

where cF (x,y,+) ∈ Z(R), and there exists some cF (z,x+y,◦) ∈ Z(R) such that

F (z ◦ (x+ y)) = F (z)(x+ y) + zδ(x+ y) + F (x+ y)z + (x+ y)δ(z) + cF (z,x+y,◦).

By Lemma 2.3, δ is additive, and hence we find

F (z ◦ (x+ y)) = F (z)x+ F (z)y + F (x)z + F (y)z + cF (x,y,+)z

+ zδ(x) + zδ(y) + xδ(z) + yδ(z) + cF (z,x+y,◦).
(2)

On the other hand, we compute

F (z ◦ (x+ y)) = F (z ◦ x+ z ◦ y)
= F (z ◦ x) + F (z ◦ y) + cF (z◦x,z◦y,+)

= F (z)x+ zδ(z) + F (x)z + xδ(z) + F (z)y + zδ(y)
+ F (y)z + yδ(z) + cF (z◦x,z◦y,+) + cF (z,x,◦) + cF (z,y,◦),

(3)

where cF (z◦x,z◦y,+), cF (z,x,◦) and cF (z,y,◦) are the corresponding central elements.
Comparing expressions (2) and (3), we find

zcF (x,y,+) + cF (z,x+y,◦) = cF (z◦x,z◦y,+) + cF (z,x,◦) + cF (z,y,◦) ∈ Z(R)

for all z ∈ R. It forces that RcF (x,y,+) ⊆ Z(R), where cF (x,y,+) is a fixed central
element in R, but R has no nonzero central ideal, therefore RcF (x,y,+) = {0}.
Likewise, we get cF (x,y,+)R = {0}. It implies that cF (x,y,+) ∈ A(R), the annihilator
of R. But A(R) is always a central ideal in R, hence our hypothesis forces A(R) =
(0) and so cF (x,y,+) = 0. From (1), we find F (x+y) = F (x)+F (y) for all x, y ∈ R,
as desired.

Corollary 3.2
Let R be a 2-torsion free noncommutative prime ring. If F is a CE- general-
ized Jordan derivation of R, constrained with CE-Jordan derivation δ, then F is
additive.

Lemma 3.3
Let R be a 2-torsion free prime ring such that [h, k] = 0 for all h ∈ H(R), k ∈
S(R), then R satisfies s4.
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Proof. In the given condition, replace h by h2 to obtain [h, k]h + h[h, k] = 0.
For any fixed k in S(R), we have d(h)h + hd(h) = 0 for all h ∈ H(R), where
d(x) = [x, k] for all x ∈ R. For nonzero d, we have the desired result by Lemma
2.13. In case, d = 0, we conclude S(R) ⊆ Z(R). It gives that [u, r] = 0 for all
u ∈ S(R) and r ∈ R. Since for each x in R, x− x∗ in S(R), we have

[x− x∗, r] = 0 for all x, r ∈ R. (4)

Replacing x by xk in (4), where k ∈ S(R) ⊆ Z(R), we find [x + x∗, r]k = 0 for
all x, r ∈ R and k ∈ S(R). Right multiply (4) by k and then compare with the
last expression in order to get 2[x, r]k = 0 for all x, r ∈ R and k ∈ S(R). It
forces that either R is commutative or S(R) = {0}. In case S(R) = {0}, we see
xy = (xy)∗ = y∗x∗ = yx for all x, y ∈ R, i.e. R is commutative. Hence in each
case R is commutative, and we are done.

Proposition 3.4
Let R be a 2-torsion free noncommutative prime ring with involution ’∗’ and
F : R→ R a generalized derivation constrained with derivation δ. If [F (x), x∗] = 0
for all x ∈ R, then R is an order in a central simple algebra of dimension at most
4 over its center or F = 0.

Proof. By the given hypothesis, we have [F (x), x∗] = 0 for all x ∈ R. It follows
that

[F (x)∗, x] = 0 for all x ∈ R.

Since F ∗ is additive and commuting function, thereby using Lemma 2.7, there
exists λ ∈ C and a mapping σ : R→ C such that

F (x)∗ = λx+ σ(x) for all x ∈ R.

It implies
F (x) = λ∗x∗ + σ(x)∗ for all x ∈ R. (5)

Using Lemma 2.10, we have a in Qml(R) such that

F (x) = ax+ δ(x) for all x ∈ R. (6)

Compare (5) and (6) to obtain

λ∗x∗ + σ(x)∗ = ax+ δ(x) for all x ∈ R. (7)

For any c in C, replace x by c in (7) to conclude ac ∈ C. Using primeness of
R, and C 6= {0}, we conclude a ∈ C. Using this fact and taking h instead of x
in (7), where h ∈ H(R), we find [δ(h), h] = 0 for all h ∈ H(R). For nonzero δ, R
satisfies s4 identity by Lemma 2.11, but as R is assumed to be noncommutative,
invoking Lemma 2.5 R is an order in a central simple algebra of dimension at most
4 over its center, as desired.

Now, If δ = 0 from (6), we have F (x) = ax, where a ∈ C for all x ∈ R.
Replace x by h, where h ∈ H(R) in (7) to obtain (λ∗ − a)h = −σ(h)∗ ∈ C for
all h ∈ H(R). It implies either λ∗ = a or H(R) ⊆ Z(R). In case H(R) ⊆ Z(R),
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by Lemma 2.12, R satisfies s4 identity by Lemma 2.11, but as R is assumed to be
noncommutative, invoking Lemma 2.5 R is an order in a central simple algebra of
dimension at most 4 over its center, as desired. Now if λ∗ = a, then replacement
of x by k in S(R) in (7) gives λ∗k in C for all k ∈ S(R). Using primeness of R, if
0 6= λ, we have S(R) ⊆ Z(R), which further implies R is commutative as we have
already seen in the proof Lemma 3.3.

On the other hand, if λ = 0, then we have F = 0 as desired.

Remark 3.5

(a) Let R is 2-torsion free noncommutative prime ring. We now show that
an additive map F is a CE-generalized Jordan derivation if and only if
F (x2)− F (x)x− xδ(x) ∈ Z(R).
⇒ Let F be an additive CE-gneralized Jordan derivation, i.e.

F (x ◦ y)− F (x)y − F (y)x− xδ(y)− yδ(x) ∈ Z(R) for all x, y ∈ R.

Taking x = y in this relation, we get

F (2x2)− 2F (x)x− 2xδ(x) ∈ Z(R).

Since F is additive and R is 2-torsion free, we have

F (x2)− F (x)x− xδ(x) ∈ Z(R) for all x ∈ R,

as desired.
⇐ On the other hand, let us suppose that F is an additive map satisfying

F (x2)− F (x)x− xδ(x) ∈ Z(R) for all x ∈ R.

Linearizing this relation, we find

F (x2 + x◦y + y2)− F (x)x− F (x)y − yF (x)− F (y)y
− xδ(x)− xδ(y)− yδ(x)− yδ(y) ∈ Z(R) for all x, y ∈ R.

Since F is additive, it yields

(F (x2)− F (x)x− xδ(x)) + (F (x ◦ y)− F (x)y − yF (x)− xδ(y)− yδ(x))
+ (F (y2)− (F (y)y − yδ(y)) ∈ Z(R) for all x, y ∈ R.

The given hypothesis reduces it to

F (x ◦ y)− F (x)y − yF (x)− xδ(y)− yδ(x) ∈ Z(R) for all x, y ∈ R,

hence F is an additive CE-generalized Jordan derivation.
(b) In case R is a noncommutative prime ring, we have the following example

of CE-generalized Jordan derivation. Let Z be the ring of integers and

R =
{(

a b
c d

)
: a, b, c, d ∈ Z

}
,
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a noncommutative prime ring. Then the mapping F : R→ R such that

F
(a b
c d

)
=
( a 2b
b+ c d

)
with associated mapping δ : R→ R defined as

δ
(
a b
c d

)
=
( 0 b
b 0
)
.

Then one can notice that F is a CE-generalized Jordan derivation of R,
which is not necessarily a generalized Jordan derivation or CE-generalized
derivation.

3.1. Proof of Theorem 1.2

If Z(R) = {0}, then CE-generalized Jordan derivation is clearly a generalized
Jordan derivation and by Lemma 2.9, every generalized Jordan derivation is a
generalized derivation. Thus by the hypothesis, we have the situation [F (x), x] = 0
for all x ∈ R, where F is a generalized derivation of R. By a direct consequence
of Lemma 2.8 there exists λ in C such that F (x) = λx for all x ∈ R.

For non-trivial implication, we assume Z(R) 6= {0}. By the given hypothesis,
we have [F (x), x] ∈ Z(R) for all x ∈ R. In view of Corollary 3.2, F is additive and
hence by Lemma 2.6, it follows that

[F (x), x] = 0 for all x ∈ R.

Since F is additive and commuting map, thereby using Lemma 2.7 there exist
λ ∈ C and a mapping σ : R→ C such that

F (x) = λx+ σ(x) for all x ∈ R. (8)

It is obvious to see from (B) that

F (x2)− F (x)x− xδ(x) ∈ Z(R) for all x ∈ R, (9)

In view of (9) and (8), it follows that

λx2 + σ(x2)− λx2 − σ(x)x− xδ(x) ∈ C for all x ∈ R.

It implies
σ(x)x+ xδ(x) ∈ C for all x ∈ R. (10)

In particular, if x ∈ Z(R) we obtain

x[δ(x), y] = 0 for all y ∈ R, x ∈ Z(R),

which gives xR[δ(x), R] = {0}. Therefore, for each x ∈ Z(R) either x = 0 or
δ(x) ∈ Z(R). As Z(R) is an additive subgroup of R, by applying Brauer’s trick,
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we have either Z(R) = {0} or δ(Z(R)) ⊆ Z(R). In view of our assumption
Z(R) 6= {0}, therefore we are left with δ(Z(R)) ⊆ Z(R). Polarizing (10), we have

σ(x)y + σ(y)x+ yδ(x) + xδ(y) ∈ C for all x ∈ R. (11)

In particular, take 0 6= y ∈ Z(R) in (11) to conclude

[δ(x), x] = 0 for all x ∈ R.

By Lemma 2.4, R is an order in a central simple algebra of dimension at most 4
over its center or δ = 0. In case δ = 0, from (10) we obtain σ(x)x ∈ C. Using
the primeness of R and Brauer’s trick, we conclude that either σ = 0 or R is
commutative. Clearly, R can not be commutative, therefore we have from (8),
F (x) = λx for all x ∈ R. This completes the proof.

3.2. Proof of Theorem 1.3

If Z(R) = {0}, then the CE-generalized Jordan derivation F is just an ordi-
nary generalized Jordan derivation and hence a generalized derivation by Lemma
2.9. For a generalized derivation, we get the conclusion by Proposition 3.4.

Now we suppose that Z(R) 6= {0}. By the given hypothesis, we have

[F (x), x∗] ∈ Z(R) for all x ∈ R.

With the aid of Lemma 2.1 and Corollary 3.1 we get

[F (x), x∗] = 0 for all x ∈ R. (12)

Applying involution on both sides in (12) we find

[F (x)∗, x] = 0 for all x ∈ R.

Using Lemma 2.7, there exist λ in C and a mapping σ : R→ C such that

F (x)∗ = λx+ σ(x) for all x ∈ R. (13)

It implies that
F (x) = λ∗x∗ + σ(x)∗ for all x ∈ R. (14)

Using (B), we find

F (x ◦ hc)− F (x)(hc)− F (hc)x− xδ(hc)− hcδ(x) ∈ Z(R) for all x ∈ R. (15)

By (14), we have

λ∗(x ◦ hc)∗ − λ∗(x)∗hc − σ(hc)∗x− λ∗hcx− xδ(hc)− hcδ(x) ∈ C
for all x ∈ R.

(16)

Replace x by 0 6= hc, where hc ∈ H(R) ∩ Z(R) in (16) to obtain

δ(hc) ∈ C. (17)
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Expanding (16), we find

λ∗(x∗ − x)hc − σ(hc)∗x− xδ(hc)− hcδ(x) ∈ C for all x ∈ R. (18)

We now split the proof into two parts.
Case 1. Suppose that the involution induced on C is not identity. Then there

exists c in C such that c∗ 6= c. Let c∗ − c = zc. Clearly z∗c = −zc 6= 0 and zc in C.
By Lemma 2.2, there exists a nonzero ideal J of R such that zcJ ⊆ R. Replace x
by jzc, where j in J in (18) to obtain

λ∗(−j∗ − j)zchc − σ(hc)∗jzc − jδ(hc)zc − hcδ(jzc) ∈ C for all j ∈ J. (19)

In particular, put x = j, where j in J in (18) to conclude

λ∗(j∗ − j)hc − σ(hc)∗j − jδ(hc)− hcδ(j) ∈ C for all j ∈ J. (20)

Multiply (20) with zc and then compare with (19) to get

−2λ∗j∗zchc − hcδ(jzc) + hcδ(j)zc ∈ C for all j ∈ J.

As 0 6= hc, it gives

−2λ∗j∗zc − δ(jzc) + δ(j)zc ∈ C for all j ∈ J. (21)

Replacing j by j ◦ y in (21), we may infer that

(−2λ∗j∗zc) ◦ y∗ − δ(jzc) ◦ y − (jzc) ◦ δ(y) + (δ(j) ◦ y + j ◦ δ(y))zc ∈ C
for all y ∈ R, j ∈ J.

It can also be written as

(−2λ∗j∗zc) ◦ y∗ − δ(jzc) ◦ y + (δ(j) ◦ y)zc ∈ C for all j ∈ J, y ∈ R. (22)

Replace y by j1zc in (22) to obtain

2(λ∗j∗zc)◦j∗1zc−(δ(jzc)◦j1)zc+(δ(j)◦j1)z2
c ∈ C for all j, j1 ∈ J, y ∈ R. (23)

Replace y by j1 in (22) to get

(−2λ∗j∗zc) ◦ j∗1 − (δ(jzc)) ◦ j1 + (δ(j) ◦ j1)zc ∈ C for all j, j1 ∈ J.

Right multiplying the above expression by zc, we have

(−2λ∗j∗zc) ◦ j∗1zc− ((δ(jzc)) ◦ j1)zc + (δ(j) ◦ j1)z2
c ∈ C for all j, j1 ∈ J. (24)

Compare (23) and (24) to obtain 4(λ∗j∗zc) ◦ (j∗1zc) ∈ C.
Since zc 6= 0, by using primness of R, we find either 4λ = 0 or j ◦ j1 ∈ Z(R)

for all j, j1 ∈ J . If J2 ⊆ Z(R), then it is not difficult to get R is commutative,
which is a contradiction. Therefore we have λ = 0; using it in (13) to conclude
[δ(x), x] = 0 for all x ∈ R. In view of Lemma 2.4, we are done.
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Case 2. If the involution induced on C is identity, then c∗ = c for all c ∈ C.
Replacing x by h in (18), where h ∈ H(R), we have

−σ(hc)h− hδ(hc)− hcδ(h) ∈ C. (25)

Commuting with x and using (17) give

δ(hc)[h, x] + σ(hc)[h, x] + hc[δ(h), x] = 0

Substituting h by h2 in the last relation and then simplify it, we conclude

δ(h)[h, x] + [h, x]δ(h) = 0. (26)

Polarizing the variable h in (26), we find

δ(h1)[h, x] + δ(h)[h1, x] + [h, x]δ(h1) + [h1, x]δ(h) = 0 for all h, h1 ∈ H(R).

In particular, replace h1 by hc to obtain

2δ(hc)[h, x] = 0 for all h ∈ H(R).

Using primeness of R, if δ(hc) 6= 0, then H(R) ⊆ Z(R) and hence R is an
order in a central simple algebra of dimension at most 4 over its center by Lemma
2.12. In case δ(hc) = 0, replacing x by k in (18), where k in S(R), we obtain

−2λkhc − σ(hc)k − hcδ(k) ∈ C for all k ∈ S(R). (27)

It implies

(−2λkhc − σ(hc)k − hcδ(k))∗ ∈ C for all k ∈ S(R).

It can also be written as

2λkhc + σ(hc)k − hcδ(k)∗ ∈ C for all k ∈ S(R). (28)

Adding (27) and (28) yields

δ(k) + δ(k)∗ ∈ C for all k ∈ S(R). (29)

From (25), we also have

−σ(hc)h− hcδ(h) ∈ C for all h ∈ H(R).

In view of our assumption, it follows that

(−σ(hc)h− hcδ(h))∗ = −σ(hc)h− hcδ(h)

Since hc is nonzero, it implies that δ(h)∗ = δ(h) for all h ∈ H(R). From (27), we
also have

[δ(k), k] = 0 for all k ∈ S(R).
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Polarize the above equation to obtain

[δ(k), k1] + [δ(k1), k] = 0 for all k, k1 ∈ S(R).

Replace k1 by h ◦ k, where h in H(R), k in S(R) to get

[δ(h) ◦ k, k] + [h ◦ δ(k), k] + [δ(k), h ◦ k] = 0. (30)

Taking involution on both sides in (30) and using the fact that δ(h)∗ = δ(h) for
all h in H(R), we find

−[δ(h) ◦ k, k] + [h ◦ δ(k)∗, k] + [δ(k)∗, h ◦ k] = 0
for all k ∈ S(R), h ∈ H(R).

(31)

Adding (30) and (31) yields

[h ◦ (δ(k) + δ(k)∗), k] + [δ(k) + δ(k)∗, h ◦ k] = 0
for all k ∈ S(R), h ∈ H(R).

Using (29), we have

(δ(k) + δ(k)∗)2[h, k] = 0 for all k ∈ S(R), h ∈ H(R).

It forces that for each k in S(R) either [h, k] = 0 for all h ∈ H(R) or δ(k)+δ(k)∗ =
0. Invoking Brauer’s trick, we have either [H(R), S(R)] = {0} or δ(k)∗ = −δ(k)
for all k ∈ S(R). In the former case, we get our conclusion from Lemma 3.3.

Therefore, we left with δ(k)∗ = −δ(k) for all k ∈ S(R). From (27), we have

(−2λkhc − σ(hc)k − hcδ(k))∗ = −2λkhc − σ(hc)k − hcδ(k) for all k ∈ S(R).

Since c∗ = c for all c ∈ C, it implies

2λkhc + σ(hc)k + hcδ(k) = −2λkhc − σ(hc)k − hcδ(k).

It can also be written as

4λkhc + 2σ(hc)k + 2hcδ(k) = 0 for all k ∈ S(R). (32)

Replace k by k ◦ h, where h in H(R), k in S(R) to obtain

(4λkhc + 2σ(hc)k + 2hcδ(k))h+ h(4λkhc + 2σ(hc)k + 2hcδ(k))
+ 2hc(k ◦ δ(h)) + 2hccδ(k,h,◦) = 0,

where cδ(k,h,◦) ∈ Z(R). In view of (32), it follows that

k ◦ δ(h) ∈ Z(R) for all h ∈ H(R), k ∈ S(R).

Commuting with k, we get

[δ(h), k]k + k[δ(h), k] = 0 for all k ∈ S(R), h ∈ H(R).
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For fixed h in H(R), we have d(k)k + kd(k) = 0 for all k ∈ S(R), where d(x) =
[δ(h), x]. Using Lemma 2.14, we have our conclusion or δ(h) in Z(R) for all
h ∈ H(R). Using (26), we have δ(h)[h, r] = 0. That gives δ(h)R[h, r] = 0 for
all h ∈ H(R), r ∈ R. Using Brauer’s trick, we have either H(R) ⊆ Z(R) or
δ(H(R)) = {0}.

The former case gives the desired result by Lemma 2.12 and in the latter
case, using (25), we have σ(hc)h ∈ C for all h ∈ H(R). It implies σ(hc) = 0 or
h ⊆ Z(R). In view of Lemma 2.12, h in Z(R) for all h ∈ H(R) gives the desired
result.

Assume that σ(hc) = 0 for all hc ∈ H(R) ∩ Z(R) and using it in (32), we get
2hc(2λk + δ(k)) = 0. Since hc 6= 0, it implies that δ(k) = −2λk for all k ∈ S(R).
Now from (B), we have

F (k2)− F (k)k − kδ(k) ∈ Z(R) for all k ∈ S(R). (33)

Using (14) in (33), we find

λ∗(k2)∗ + σ(k2)∗ − λ∗k∗k − σ(k)∗k − k(−2λk) ∈ C.

It implies
4λk2 − σ(k)k ∈ C for all k ∈ S(R). (34)

Since c∗ = c for all c ∈ C. So, we conclude that

(4λk2 − σ(k)k)∗ = 4λk2 − σ(k)k for all k ∈ S(R),

4λk2 + σ(k)k = 4λk2 − σ(k)k for all k ∈ S(R).

It implies σ(k)k = 0. Using primeness of R and Brauer’s trick, we obtain that
either σ(k) = 0 for all k ∈ S(R) or S(R) = {0}. The case S(R) = {0} leads a
contradiction, as it gives R commutative.

On the other hand, using (34), we have λk2 in C. It implies either λ = 0 or
k2 ∈ Z(R). Suppose that k2 in Z(R) for all k ∈ S(R), we have [k, x]k+k[k, x] = 0.
For any fixed x in R, we have d(k)k+kd(k) = 0 for all k ∈ S(R), where d(y) = [y, x]
for all y ∈ R. Using Lemma 2.14, either R satisfy s4 identity or d = 0, i.e. [x, y] = 0
for all x, y in R. Thus, we have the result.

If λ = 0, then using (18), we obtain [δ(x), x] = 0 for all x ∈ R. With the aid
of Lemma 2.4, we get the desired outcome. It completes the proof.
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