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y2 = x5 + n2

Abstract. We give an algebraic description of the set of algebraic points of
degree at most d over Q on hyperelliptic curves y2 = x5 + n2.

1. Introduction and result

Let Q be the field of rational numbers and Q a algebraic closure of Q. Let C
be an algebraic curve of genus g ≥ 2 defined over Q, and JC its jacobian variety.
A celebrated theorem of Mordell-Weil states that the group JC(Q) of rational
points of the jacobian JC is a abelian group of finite type, e.g. JC(Q) ∼= Zr ×
JC(Q)tors, where the integer r is called the rank of the variety JC and JC(Q)tors
the torsion subgroup. In this note, we study the algebraic points of degree at most
d on hyperelliptic curves CA of genus 2 of affine equations

CA : y2 = x5 +A for some integer A.

The degree of an algebraic point on CA is the degree of its field of definition
over Q. Note that the case A = 1 goes back to Schaefer ([8]), Fall ([3]) and
Sall, et al ([7]). The purpose of this note is to settle the case A = n2 with
n ∈ {4, 5, 8, 10, 12, 16, 20, 27, 36, 144, 162, 216, 400, 432, 625, 648, 1250, 1296, 5000}.
Let η be a primitive 10-th root of unity in Q and we put An

k = ( 5
√
n2η2k+1, 0) with

0 ≤ k ≤ 4. Also let Pn = (0, n), Pn = (0,−n) and P∞ the point at infinity on Cn2 .
Various works study these curves (see [9], [10], [11]).
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Combining the results given by Mulholland ([5], p. 177-178) and Bruni ([1],
p. 142), we obtain the following theorem

Theorem 1
The Q−rational points on the curve Cn2 are given by

Cn2(Q) = {Pn, Pn, P∞}.

It is also known since Faltings ([2]), for a number field K, the set Cn2(K) of K-
rational points on Cn2 is finite. We are interested mostly in this note in describing
this set. More precisely, we give an algebraic description of the set of algebraic
points of degree at most d over Q on the curve Cn2 . We denote this set by Cd

n2(Q).
The underlying principle of the method used to study these algebraic points in
this paper is as follows. It is assumed that one knows or determines the structure
of the Mordell-Weil group JCn2 (Q) and that it is finite (e.g. r = 0),

JCn2 (Q) ∼= Z/n1Z× · · · × Z/nsZ.

Consider a base point P∞ ∈ Cn2(Q); the Abel–Jacobi map associated to P∞ is
the embedding j : Cn2 → JCn2 , P 7→ [P −P∞], where [P −P∞] denotes the class of
the divisor P −P∞. We then determine D1, . . . , Ds divisors on Cn2 defined over Q
such that j(Di) is of order ni and j(D1), . . . , j(Ds) generate JCn2 (Q). Let then R
be an algebraic point on Cn2 of degree d. Let R1, . . . , Rd be its conjugates under
the Galois action, then j(R1+· · ·+Rd) ∈ JCn2 (Q) and consequently, there existmi

with 0 ≤ mi ≤ ni− 1 such that j(R1 + · · ·+Rd) = m1j(D1) + · · ·+msj(Ds). The
Abel-Jacobi theorem (see [4], p. 155) leads to the existence of a rational function
f defined over Q such that

div(f) = R1 + · · ·+Rd −m1D1 − · · · −msDs +
(∑

1≤i≤s mideg(Di)− d
)
P∞.

Our main result is the following theorem.

Theorem 2
1. The algebraic points of degree 2 on Cn2 over Q are given by

C(2)
n2 (Q) = {(x,±

√
x5 + n2) : x ∈ Q∗}.

2. The algebraic points of degree 3 on Cn2 over Q are given by

C(3)
n2 (Q) = {(x,±n− λx2) : λ ∈ Q∗ and x root of x3 − λ2x2 ± 2λn = 0}.

3. The algebraic points of degree 4 on Cn2 over Q are given by

C(4)
n2 (Q) = An

0 ∪ An
1 ∪ An

2

with

An
0 ={(x,±

√
x5 + n2) : [Q(x) : Q] = 2};

An
1 ={(x,±n− λx− µx2) : λ ∈ Q∗, µ ∈ Q and x root of
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Bn
1 (x) = x4 − µ2x3 − 2λµx2 + (−λ2 ± 2µn)x± 2λn};

An
2 ={(x,±n− λx2 − µx3) : λ, µ ∈ Q∗ and x root of

Bn
2 (x) = µ2x4 + (2λµ− 1)x3 + λ2x2 ∓ 2µnx∓ 2λn}.

4. The algebraic points of degree at most d with d ≥ 5 on Cn2 over Q are given
by

Cd
n2(Q) = Dn

0 ∪ Dn
1 ∪ Dn

2 ∪ Dn
3

with

Dn
0 ={(x,±

√
x5 + n2) : [Q(x) : Q] ≤ d

2 if d is even};

Dn
1 =

{(
x,−

∑
0≤i≤ d

2
aix

i∑
0≤j≤ d−5

2
bjxj

)
: a d

2
6= 0 and ∃ bj 6= 0 if d is even,

b d−5
2
6= 0 if d odd and x root of

Fn
1 (x) =

(∑
0≤i≤ d

2
aix

i
)2 −

(∑
0≤j≤ d−5

2
bjx

j
)2(x5 + n2)

}
;

Dn
2 =

{(
x,−

∑
0≤i≤ d+1

2
aix

i∑
0≤j≤ d−4

2
bjxj

)
: a0 = ±nb0, a d+1

2
6= 0 if d is odd,

b d−4
2
6= 0 if d is even and x root of

Fn
2 (x) =

(∑
0≤i≤ d+1

2
aix

i
)2 −

(∑
0≤j≤ d−4

2
bjx

j
)2(x5 + n2)

}
;

Dn
3 =

{(
x,−

∑
0≤i≤ d+2

2
aix

i∑
0≤j≤ d−3

2
bjxj

)
: a0 = ±nb0, a1 = ±nb1, a d+2

2
6= 0

if d is even, b d−3
2
6= 0 if d is odd and x root of

Fn
3 (x) =

(∑
0≤i≤ d+2

2
aix

i
)2 −

(∑
0≤j≤ d−3

2
bjx

j
)2(x5 + n2)

}
.

2. Fundamental lemmas

Let D be a divisor on Cn2 . The vector space L(D) is defined to be the set of
rational functions

L(D) = {f ∈ Q(Cn2)∗ : div(f) ≥ −D} ∪ {0}.

The dimension of L(D) as a Q−vector space is denoted by l(D). Let x and y
denote the functions on Cn2 given by

x(X,Y, Z) = X

Z
and y(X,Y, Z) = Y

Z3 .

The smooth projective form of the curve Cn2 is

Cn2 : Y 2 = X5Z + n2Z6.
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The following lemma gives the structure of the Mordell-Weil group JCn2 (Q)
and that the finiteness of the latter group is essential for this work.

Lemma 1
JCn2 (Q) ∼= Z/5Z.

Proof. Using of MAGMA for 2-descent on jocabians of hyperelliptic curves we
obtain the desired result (for more detaits, we refer to [12], [5], [1]).

Lemma 2
(i) div(y − n) = 5Pn − 5P∞, div(y + n) = 5Pn − 5P∞;

(ii) div(x) = Pn + Pn − 2P∞, div(y) = An
0 + · · ·+An

4 − 5P∞.

Proof. It suffices to apply the following relation

div(x− α) = (X − αZ = 0).Cn2 − (Z = 0).Cn2

with α ∈ Z, where Γ.Cn2 is the intersection cycle of a algebraic curve Γ defined
over Q and the curve Cn2 .

From Lemma 2, we see that 5j(Pn) = 5j(Pn) = 0, and j(Pn) + j(Pn) = 0.
Thus, j(Pn) and j(Pn) generate the same group JCn2 (Q) which is isomorphic to
Z/5Z.

Lemma 3
We have

L(P∞) =< 1 >, L(2P∞) = L(3P∞) =< 1, x >, L(4P∞) =< 1, x, x2 >,

L(5P∞) =< 1, x, x2, y >, L(6P∞) =< 1, x, x2, y, x3 > .

More generally, for p ≥ 5, a Q-basis for L(pP∞) is given by

Bp =
{
xi : i ∈ N and 0 ≤ i ≤ p

2
}
∪
{
yxj : j ∈ N and 0 ≤ j ≤ p− 5

2
}
.

Proof.
− It is clear that l(P∞) = 1. But L(P∞) certainly contains the constant func-

tions, thus L(P∞) =< 1 >.
− Since the genus of Cn2 is equal to 2, then 2P∞ is a canonical divisor on Cn2 ,

so l(2P∞) = 2, thus {1, x} provides a basis for L(2P∞).
− For p ≥ 3, we can see that the elements of Bp are linearly independent and

are in L(pP∞). Thus, it suffices to show that the cardinality of Bp is equal
to l(pP∞). According to the Riemann-Roch theorem (see [6], p. 71), we have
l(pP∞) = p− 1. Two cases arise:

1st case: if p is even, then by setting p = 2h, we have

i ≤ p

2 = h, j ≤ p− 5
2 = 2h− 5

2 ⇔ j ≤ h− 3.

Therefore, we get Bp = {1, x, . . . , xh}∪{y, yx, . . . , yxh−3} and hence

#Bp = (h+ 1) + (h− 3 + 1) = 2h− 1 = p− 1.
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2nd case: if p is odd, then by putting p = 2h+ 1, we obtain

i ≤ p

2 = 2h+ 1
2 ⇔ i ≤ h, j ≤ p− 5

2 = 2h− 4
2 = h− 2.

Thus, we have Bp = {1, x, . . . , xh}∪{y, yx, . . . , yxh−2} and therefore

#Bp = (h+ 1) + (h− 2 + 1) = 2h = p− 1.

3. Proof of Theorem 2

Let R be an algebraic point on Cn2 of degree d over Q; if d = 1 these points are
given by Theorem 1, so we can assume that d ≥ 2. Let R1, . . . , Rd be the Galois
conjugates of R. We have [R1 + · · ·+Rd − dP∞] ∈ JCn2 (Q) and Lemma 1 gives

[R1 + · · ·+Rd − dP∞] = mj(Pn) with 0 ≤ m ≤ 4. (1)

3.1. The algebraic points of degree 2 on Cn2 over QQQ

Case m = 0. The formula (1) becomes [R1 +R2−2P∞] = 0. The Abel-Jacobi
theorem implies the existence of a function f such that

div(f) = R1 +R2 − 2P∞.

Therefore f ∈ L(2P∞), hence f = a0 + a1x with ai 6= 0 otherwise one of the
Ri would be equal to Pn, Pn or P∞, which is absurd. At points Ri, we have
a0 +a1x = 0, hence x ∈ Q∗. The relation y2 = x5 +n2 gives y = ±

√
x5 + n2, thus

we obtain a family of points of degree 2,

{(x,±
√
x5 + n2) : x ∈ Q∗}.

For the cases m = 1, 2, 3, 4, we obtain an absurdity.
Thus, we obtain a family of points of degree 2,

C(2)
n2 (Q) = {(x,±

√
x5 + n2) : x ∈ Q∗}.

3.2. The algebraic points of degree 3 on Cn2 over QQQ

For the cases m = 0, 1, 4, we obtain an absurdity.
Cases m = 2 and m = 3.
− For m = 2, (1) becomes [R1 +R2 +R3 + 2Pn − 5P∞] = 0. There exists a

function f such that

div(f) = R1 +R2 +R3 + 2Pn − 5P∞.

Therefore f ∈ L(5P∞), hence f = a0 + a1x + a2x
2 + b0y with b0 6= 0

otherwise one of the Ri would be equal to P∞, which is absurd. The
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function f is of order 2 in Pn, so a0 − nb0 = 0 and a1 = 0. Thus f =
b0(y+ n) + a2x

2. At points Ri, we have b0(y+ n) + a2x
2 = 0. By putting

λ = a2
b0
, we obtain

y = −n− λx2.

Replacing the expression of y in y2 − x5 − n2 = 0, we have

−x2(x3 − λ2x2 − 2λn) = 0.

We must have x2 6= 0, λ 6= 0 and x3−λ2x2−2λn an irreducible polynomial,
so we get a family of points of degree 3,

{(x,−n− λx2) : λ ∈ Q∗ and x root of x3 − λ2x2 − 2λn = 0}. (2)

− For m = 3, by analogous reasoning to the case m = 2, we obtain a family
of points of degree 3,

{(x, n− λx2) : λ ∈ Q∗ and x root of x3 − λ2x2 + 2λn = 0}. (3)

Finally combining (2) and (3), we obtain

C(3)
n2 (Q) = {(x,±n− λx2) : λ ∈ Q∗ and x root of x3 − λ2x2 ± 2λn = 0}.

3.3. The algebraic points of degree 4 on Cn2 over QQQ

Case m = 0. The formula (1) becomes [R1 +R2 +R3 +R4 − 4P∞] = 0. The
Abel-Jacobi theorem implies the existence of a function f such that

div(f) = R1 +R2 +R3 +R4 − 4P∞.

Therefore f ∈ L(4P∞), hence f = a0 + a1x+ a2x
2 with a2 6= 0. At points Ri, we

have a0 + a1x + a2x
2 = 0. The relation y2 = x5 + n2 gives y = ±

√
x5 + n2, thus

we obtain a family of points of degree 4,

An
0 = {(x,±

√
x5 + n2) : [Q(x) : Q] = 2}.
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Cases m = 1 and m = 4.
− For m = 1, (1) becomes [R1 +R2 +R3 +R4 +Pn− 5P∞] = 0. Then there

exists a function f such that

div(f) = R1 +R2 +R3 +R4 + Pn − 5P∞.

Therefore f ∈ L(5P∞), hence f = a0 + a1x+ a2x
2 + b0y with b0 6= 0. The

function f is of order 1 in Pn, so a0− nb0 = 0, thus f = b0(y+ n) + a1x+
a2x

2. At points Ri, we have b0(y+n)+a1x+a2x
2 = 0. By setting λ = a1

b0
and µ = a2

b0
, we obtain

y = −n− λx− µx2.

The substitution y in y2 − x5 − n2 = 0 gives

x(x4 − µ2x3 − 2λµx2 + (−λ2 − 2µn)x− 2λn) = 0.

We must have x 6= 0, λ 6= 0 and x4− µ2x3− 2λµx2 + (−λ2− 2µn)x− 2λn
an irreducible polynomial. We obtain a family of points of degree 4,

An
1,1 = {(x,−n− λx− µx2) : λ ∈ Q∗, µ ∈ Q and x root of Bn

1,1(x)}

with Bn
1,1(x) = x4 − µ2x3 − 2λµx2 + (−λ2 − 2µn)x− 2λn.

− If m = 4, by similar reasoning to the case m = 1, we obtain a family of
points of degree 4,

An
1,4 = {(x, n− λx− µx2) : λ ∈ Q∗, µ ∈ Q and x root of Bn

1,4(x)}

with Bn
1,4(x) = x4 − µ2x3 − 2λµx2 + (−λ2 + 2µn)x+ 2λn.

Finally, we put An
1 = An

1,1 ∪ An
1,4 and Bn

1 = Bn
1,1 ∪ Bn

1,4.
Cases m = 2 and m = 3.
− For m = 2, (1) becomes [R1 +R2 +R3 +R4 + 2Pn− 6P∞] = 0. According

to the Abel-Jacobi theorem, there exists a function f such that

div(f) = R1 +R2 +R3 +R4 + 2Pn − 6P∞.

Therefore f ∈ L(6P∞), hence f = a0 +a1x+a2x
2 +b0y+a3x

3 with a3 6= 0.
The function f is of order 2 in Pn, so a0 − nb0 = 0 and a1 = 0, thus f =
b0(y+n)+a2x

2 +a3x
3. At points Ri, we have b0(y+n)+a2x

2 +a3x
3 = 0.

Noting that b0 6= 0 and by putting λ = a2
b0

and µ = a3
b0
, we have

y = −n− λx2 − µx3.

Replacing the expression of y in y2 − x5 − n2 = 0, we obtain

x2(µ2x4 + (2λµ− 1)x3 + λ2x2 + 2µnx+ 2λn) = 0.

We must have x2 6= 0, λ 6= 0 and µ2x4 + (2λµ− 1)x3 +λ2x2 + 2µnx+ 2λn
an irreducible polynomial.
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We obtain a family of points of degree 4,

An
2,2 = {(x,−n− λx2 − µx3) : λ, µ ∈ Q∗ and x root of Bn

2,2(x)}

with Bn
2,2(x) = µ2x4 + (2λµ− 1)x3 + λ2x2 + 2µnx+ 2λn.

− If m = 3, by analogous reasoning to the case m = 2, we obtain a family of
points of degree 4,

An
2,3 = {(x, n− λx2 − µx3) : λ, µ ∈ Q∗ and x root of Bn

2,3(x)}

with Bn
2,3(x) = µ2x4 + (2λµ− 1)x3 + λ2x2 − 2µnx− 2λn.

Finally, we put An
2 = An

2,2 ∪ An
2,3 and Bn

2 = Bn
2,2 ∪ Bn

2,3.

3.4. The algebraic points of degree at most d with d ≥ 5 on Cn2 over QQQ

Case m = 0. The formula (1) becomes [R1 + · · · + Rd − dP∞] = 0. The
Abel-Jacobi theorem implies the existence of a rational function f defined over Q
such that

div(f) = R1 + · · ·+Rd − dP∞.

Therefore f ∈ L(dP∞), hence f =
∑

0≤i≤ d
2
aix

i + y
∑

0≤j≤ d−5
2
bjx

j with:

(i) a d
2
6= 0 if d is even:

◦ if for 0 ≤ j ≤ d−5
2 , bj = 0, then at points Ri, we have

∑
0≤i≤ d

2

aix
i = 0,

then the relation y2 = x5 + n2 gives y = ±
√
x5 + n2, thus we obtain a

family of points of degree at most d

Dn
0 =

{
(x,±

√
x5 + n2) : [Q(x) : Q] ≤ d

2 if d is even
}

;

◦ otherwise there exists j with 0 ≤ j ≤ d−5
2 such that bj 6= 0, then y =

−
∑

0≤i≤ d
2
aix

i∑
0≤j≤ d−5

2
bjxj

, which after substitution for y in y2−x5−n2 = 0 gives

(∑
0≤i≤ d

2
aix

i
)2
−
(∑

0≤j≤ d−5
2
bjx

j
)2

(x5 + n2) = 0,

and we obtain a family of points of degree at most d,

Dn
1,0 =

{(
x,−

∑
0≤i≤ d

2
aix

i∑
0≤j≤ d−5

2
bjxj

)
: a d

2
6= 0,∃ bj 6= 0 if d is even

and x root of

Fn
1,0(x) =

(∑
0≤i≤ d

2
aix

i
)2 −

(∑
0≤j≤ d−5

2
bjx

j
)2(x5 + n2)

}
.
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(ii) b d−5
2
6= 0 if d is odd, at points Ri, we have∑

0≤i≤ d
2
aix

i + y
∑

0≤j≤ d−5
2
bjx

j = 0,

hence y = −
∑

0≤i≤ d
2
aix

i∑
0≤j≤ d−5

2
bjxj

. Replacing the expression of y in y2−x5−n2 = 0,

we obtain (∑
0≤i≤ d

2
aix

i
)2 −

(∑
0≤j≤ d−5

2
bjx

j
)2(x5 + n2) = 0.

Thus, we obtain a family of points of degree at most d,

Dn
1,1 =

{(
x,−

∑
0≤i≤ d

2
aix

i∑
0≤j≤ d−5

2
bjxj

)
: b d−5

2
6= 0 if d is odd

and x root of

Fn
1,1(x) =

(∑
0≤i≤ d

2
aix

i
)2 −

(∑
0≤j≤ d−5

2
bjx

j
)2(x5 + n2)

}
Finally, we put Dn

1 = Dn
1,0 ∪ Dn

1,1 and Fn
1 = Fn

1,0 ∪ Fn
1,1.

Cases m = 1 and m = 4.
− for m = 1, the formula (1) becomes [R1 + · · ·+Rd +Pn− (d+ 1)P∞] = 0.

There exists a function f such that

div(f) = R1 + · · ·+Rd + Pn − (d+ 1)P∞.

Therefore f ∈ L((d+1)P∞), hence f =
∑

0≤i≤ d+1
2
aix

i +y
∑

0≤j≤ d−4
2
bjx

j

with a d+1
2
6= 0 if d is odd or b d−4

2
6= 0 if d is even. The function f is of

order 1 in Pn, hence a0 = nb0. At points Ri, we have
∑

0≤i≤ d+1
2
aix

i +

y
∑

0≤j≤ d−4
2
bjx

j = 0, which implies that y = −
∑

0≤i≤ d+1
2
aix

i∑
0≤j≤ d−4

2
bjxj

. The

substitution y in y2 − x5 − n2 = 0 gives(∑
0≤i≤ d+1

2
aix

i
)2 −

(∑
0≤j≤ d−4

2
bjx

j
)2(x5 + n2) = 0.

Thus, we obtain a family of points of degree at most d,

Dn
2,1 =

{(
x,−

∑
0≤i≤ d+1

2
aix

i∑
0≤j≤ d−4

2
bjxj

)
: a0 = nb0, and x root of Fn

2,1(x)
}

with Fn
2,1(x) =

(∑
0≤i≤ d+1

2
aix

i
)2 −

(∑
0≤j≤ d−4

2
bjx

j
)2(x5 + n2).

− for m = 4, by similar reasoning to the case m = 1, we obtain a family of
points of degree at most d,

Dn
2,4 =

{(
x,−

∑
0≤i≤ d+1

2
aix

i∑
0≤j≤ d−4

2
bjxj

)
: a0 = −nb0, and x root of Fn

2,4(x)
}

with Fn
2,4(x) =

(∑
0≤i≤ d+1

2
aix

i
)2 −

(∑
0≤j≤ d−4

2
bjx

j
)2(x5 + n2).
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Finally, we put Dn
2 = Dn

2,1 ∪ Dn
2,4 and Fn

2 = Fn
2,1 ∪ Fn

2,4.
Cases m = 2 and m = 3.
− for m = 2, the formula (1) becomes [R1 + · · ·+Rd + 2Pn− (d+ 2)P∞] = 0.

According to the Abel-Jacobi theorem, there exists a function f such that

div(f) = R1 + · · ·+Rd + 2Pn − (d+ 2)P∞.

Therefore f ∈ L((d+2)P∞), hence f =
∑

0≤i≤ d+2
2
aix

i +y
∑

0≤j≤ d−3
2
bjx

j

with a d+2
2
6= 0 if d is even or b d−3

2
6= 0 if d is odd. The function f is of order

2 in Pn, so a0 = nb0 and a1 = nb1. At points Ri, we have
∑

0≤i≤ d+2
2
aix

i +

y
∑

0≤j≤ d−3
2
bjx

j = 0, which leads to y = −
∑

0≤i≤ d+2
2
aix

i∑
0≤j≤ d−3

2
bjxj

. The substitu-

tion of y in y2 − x5 − n2 = 0 gives(∑
0≤i≤ d+2

2
aix

i
)2 −

(∑
0≤j≤ d−3

2
bjx

j
)2(x5 + n2) = 0.

Thus, we find a family of points of degree at most d,

Dn
3,2 =

{(
x,−

∑
0≤i≤ d+2

2
aix

i∑
0≤j≤ d−3

2
bjxj

)
: a0 = nb0, a1 = nb1

and x root of Fn
3,2(x)

}
with Fn

3,2(x) =
(∑

0≤i≤ d+2
2
aix

i
)2 −

(∑
0≤j≤ d−3

2
bjx

j
)2(x5 + n2).

− for m = 3, by analogous reasoning to the case m = 2, we find a family of
points of degree at most d,

Dn
3,3 =

{(
x,−

∑
0≤i≤ d+2

2
aix

i∑
0≤j≤ d−3

2
bjxj

)
: a0 = −nb0, a1 = −nb1

and x root of Fn
3,3(x)

}
with Fn

3,3(x) =
(∑

0≤i≤ d+2
2
aix

i
)2 −

(∑
0≤j≤ d−3

2
bjx

j
)2(x5 + n2).

Finally, we put Dn
3 = Dn

3,2 ∪ Dn
3,3, Fn

3 = Fn
3,2 ∪ Fn

3,3 and Cd
n2(Q) = Dn

0 ∪ Dn
1 ∪

Dn
2 ∪ Dn

3 .

Remark 1
The result obtained remains true for any integer n for which JCn2 (Q) ∼= Z/5Z and
that the set of Q-rational points on Cn2 is given by {Pn, Pn, P∞}.
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