Dedicated to Professor Andrzej Zajtz
on the occasion of his 70th birthday

Andrzej Smajdor, Wilhelmina Smajdor
Local analytic solutions of a functional equation

Abstract. All analytic solutions of the functional equation

\[|f(r \exp(i\theta))|^2 + |f(1)|^2 = |f(r)|^2 + |f(\exp(i\theta))|^2 \]

in the annulus

\[P := \{ z \in \mathbb{C} : 1 - \epsilon < |z| < 1 + \epsilon \} \]

and in the domain

\[D := \{ z = re^{i\theta} \in \mathbb{C} : 1 - \epsilon < r < 1 + \epsilon, \ \theta \in (-\delta, \delta) \}, \]

defined in the annulus

\[P := \{ z \in \mathbb{C} : 1 - \epsilon < |z| < 1 + \epsilon \} \]

are found.

1. Introduction

Hiroshi Haruki in [1] studied the following functional equations

\[|f(r \exp(i\theta))|^2 + |f(1)|^2 = |f(r)|^2 + |f(\exp(i\theta))|^2, \] (1)

and

\[|f(r \exp(i\theta))| = |f(r)|, \] (2)

where \(r > 0, \ \theta \) are real. Equation (1) can be obtained from (2). In fact, let us put \(r = 1 \) in (2). Then we have

\[|f(\exp(i\theta))| = |f(1)| \] (3)

for \(\theta \in \mathbb{R} \). Next squaring (2) and (3) and adding them together we infer (1). Thus (1) is a generalization of (2), i.e., if \(f \) is a solution of (2), then it is a solution of (1). In paper [1] H. Haruki showed that all analytic solutions in \(\mathbb{C} \setminus \{0\} \) of (1) which are analytic at 0 or have a pole at this point can be written as follows

\[f(z) = Az^p + Bz^{-p}, \] (4)

where \(A, \ B \) are complex constants and \(p \) is an integer.

AMS (2000) Subject Classification: 39B32, 30D05.
We are going to prove that the functions of the form (4) are unique analytic solutions of (1) in the annulus
\[P := \{ z \in \mathbb{C} : 1 - \epsilon < |z| < 1 + \epsilon \}, \]
where \(0 < \epsilon \leq 1 \) is a constant. We shall also find all analytic solutions of (1) in the domain
\[D := \{ z = re^{i\theta} \in \mathbb{C} : 1 - \epsilon < r < 1 + \epsilon, \ \theta \in (-\delta, \delta) \}, \]
where \(0 < \epsilon \leq 1 \) and \(0 < \delta \leq \pi \) are given constants. Moreover, we shall determine all analytic solutions in \(P \) and in \(D \) of (2) and of the equation
\[|f(r \exp(i\theta))| = |f(\exp(i\theta))|. \tag{5} \]
Of course, (1) is also a generalization of (5).

2. Solutions of (1), (2) and (5) in \(P \)

In this section we will be concerned with analytic solutions of equations (1), (2) and (5) in the annulus \(P \).

Theorem 1

If \(f \) is an analytic solution of (1) in \(P \), then there exist complex constants \(A, B \) and an integer \(p \) such that (4) is valid. Conversely, for every complex constants \(A, B \) and for every integer \(p \), \(f \) given by (4) is a solution of (1).

Proof. It is easy to check that \(f \) given by (4) satisfies (1). The function \(f(z) \equiv 0 \) in \(P \) is a solution of (1) of the form (4). Suppose that an analytic function \(f \) is a solution of (1) and \(f \not\equiv 0 \). Of course,
\[f(re^{i\theta} f(re^{i\theta}) + |f(1)|^2 = |f(r)|^2 + |f(e^{i\theta})|^2 \tag{6} \]
for \(\theta \in \mathbb{R} \) and \(r \in (1 - \epsilon, 1 + \epsilon) \). Differentiating (6) at first with respect to \(r \) and then with respect to \(\theta \) we successively infer
\[e^{i\theta} f'(re^{i\theta}) f(re^{i\theta}) + e^{-i\theta} f(re^{i\theta}) f'(re^{i\theta}) = \frac{d}{dr} |f(r)|^2 \]
and
\[re^{2i\theta} f''(re^{i\theta}) f(re^{i\theta}) - re^{-2i\theta} f(re^{i\theta}) f''(re^{i\theta}) + e^{i\theta} f'(re^{i\theta}) f'(re^{i\theta}) \]
\[- e^{-i\theta} f'(re^{i\theta}) f'(re^{i\theta}) \]
\[= 0. \]
Let us multiply the obtained equality by \(r \) and replace \(re^{i\theta} \) by \(z \). Then
\[z^2 f''(z)f(z) - \overline{z^2 f''(z)f(z)} + z f'(z)f(z) - \overline{z f'(z)f(z)} = 0, \]

i.e.,
\[\Im \left[z^2 f''(z)f(z) + z f'(z)f(z) \right] = 0 \]
(7)
for all \(z \in P \). Since \(f \neq 0 \), we can find a disc \(V \subset P \) such that \(f(z) \neq 0 \) for all \(z \in V \). The equality \(f(z) = \frac{|f(z)|^2}{f(z)} \), valid in this disc, and (7) imply
\[\Im \left[\frac{z^2 f''(z) + zf'(z)}{f(z)} \right] = 0 \]
for all \(z \in V \). Since an analytic function preserves domains, there exists a real constant \(k \) such that
\[z^2 f''(z) + zf'(z) - kf(z) = 0 \]
(8)
for all \(z \in V \). By the Identity Theorem formula (8) remains valid in \(P \). (The above part of the proof is due to H. Haruki, see [1], pp. 130-131). We can find complex numbers \(a_n, n \in \mathbb{Z} \) such that for all \(z \in P \),
\[f(z) = \sum_{n=-\infty}^{\infty} a_n z^n. \]
Since
\[f'(z) = \sum_{n=-\infty}^{\infty} n a_n z^{n-1}, \quad f''(z) = \sum_{n=-\infty}^{\infty} n(n-1) a_n z^{n-2} \]
we conclude that
\[0 = z^2 f''(z) + zf'(z) - kf(z) = \sum_{n=-\infty}^{\infty} [n(n-1) + n - k]a_n z^n, \]
whence
\[(n^2 - k)a_n = 0 \quad \text{for all } n \in \mathbb{Z}. \]
(9)
We choose \(p \in \mathbb{Z} \) such that \(a_p \neq 0 \). It is possible as \(f \neq 0 \). From (9) we get that \(p^2 = k \) and
\[(n^2 - p^2) a_n = 0 \quad \text{for all } n \in \mathbb{Z}. \]
So, if \(n^2 \neq p^2 \), then \(a_n = 0 \), whence it follows that \(a_n = 0 \) for all \(n \neq p \) and \(n \neq -p \). Thus
\[f(z) = a_p z^p + a_{-p} z^{-p} \]
for \(z \in P \), as desired.

The following two lemmas are quite obvious.

Lemma 1
If the equality
\[Ae^{ia\theta} + \overline{A}e^{-ia\theta} = A + \overline{A} \]
for all \(\theta \).
holds true for all \(\theta \in (\delta, \bar{\delta}) \), where \(A \) is a complex constant, \(a \neq 0 \) is a real one, then \(A = 0 \).

Lemma 2

If the equality

\[
\alpha e^{a\theta} + \beta e^{-a\theta} = \alpha + \beta
\]

holds true for all \(\theta \in (\delta, \bar{\delta}) \), where \(a \neq 0 \), \(\alpha, \beta \) are real constants, then \(\alpha = \beta = 0 \).

Now we will consider equation (2). As we mentioned above, every solution of (2) is a solution of (1). Thus if \(f \) is an analytic solution of (2), then \(f \) has to be of form (4) for some complex constants \(A, B \) and some integer \(p \). Assume that \(p \neq 0 \). Substituting (4) to (2) we get

\[
ABe^{2ip\theta} + \overline{A}Be^{-2ip\theta} = AB + \overline{A}B, \quad \theta \in \mathbb{R}.
\]

Lemma 1 yields \(A = 0 \) or \(B = 0 \). Thus we have

Theorem 2

If \(f \) is an analytic solution of (2) in the annulus \(P \), then there exist a complex constant \(A \) and an integer \(p \) such that

\[
f(z) = Az^p.
\]

Conversely, for every complex constant \(A \) and for every integer \(p \), the function \(f \) given by (10) is a solution of (2).

Theorem 3

Every analytic solution of (5) in the annulus \(P \) is a constant function.

Proof. Suppose that \(f \) is a solution of (5). Then \(f \) has to be of form (4). We may assume that \(p \neq 0 \). Combining (4) with (5) we obtain

\[
|A|^2r^{2p} + |B|^2r^{-2p} = |A|^2 + |B|^2 \quad \text{for all } r \in (1 - \epsilon, 1 + \epsilon).
\]

Lemma 2 shows that \(A = B = 0 \), which completes the proof.

3. Solutions of (1), (2) and (5) in \(D \)

In this part of the paper we shall find all analytic solutions of equations (1), (2) and (5) in the domain \(D := \{re^{i\theta} : 1 - \epsilon < r < 1 + \epsilon, \theta \in (-\delta, \delta)\} \), where \(0 < \epsilon \leq 1 \) and \(0 < \delta \leq \pi \). In the sequel \(z^\alpha \) denotes the principal branch
of the power in D and $\log z$ is the principal branch of the logarithm of z, i.e., $z^a = \exp(a \log z)$ and $\log z = \log |z| + i \arg z$ for $z \in D$, where $\arg z \in (-\delta, \delta)$.

Theorem 4

If an analytic function f satisfies (1) in D, then there exist complex constants A, B and $a \in \mathbb{R}$ or $a \in i\mathbb{R}$ such that

$$f(z) = Az^a + Bz^{-a}.$$

(11)

Conversely, every function f of form (11) with arbitrary complex constants A, B and arbitrary real or purely imaginary constant a is a solution of (1).

Proof. We may repeat the argument of the proof of Theorem 1. Thus we observe that if an analytic function f satisfies (1) in D, then it has to be a solution of the differential equation

$$z^2 f''(z) + zf'(z) - kf(z) = 0, \quad z \in D,$$

(12)

where k is a real constant. Let

$$G = \{ \log z : z \in D \}.$$

Of course, G is a domain. We define a function $g : G \rightarrow \mathbb{C}$ as follows

$$g(u) := f(e^u).$$

g is analytic, $f(z) = g(\log z)$ for $z \in D$ and

$$e^u f'(e^u) = g'(u), \quad e^{2u} f''(e^u) = g''(u) - g'(u), \quad u \in G.$$

(13)

It follows from (12) that

$$e^{2u} f''(e^u) + e^u f'(e^u) - kf(e^u) = 0 \quad \text{for all } u \in G,$$

whence by (13)

$$g''(u) - kg(u) = 0, \quad u \in G.$$

Solving this differential equation we get

$$g(u) = Ae^{au} + Be^{-au},$$

where A, B are suitable complex constants and $a^2 = k$. So a is a real constant or $a = ic$, where $c \in \mathbb{R}$. Putting $u = \log z$ we obtain (11). The first assertion of the theorem follows.

For the second conclusion, let us take arbitrarily $a \in \mathbb{R}, A, B \in \mathbb{C}$ and let f be given by (11). We observe that

$$f(re^{i\theta}) = Ar^a e^{ia} + Br^{-a} e^{-ia}; \quad f(e^{i\theta}) = Ae^{ia} + Be^{-ia},$$

$$f(r) = Ar^a + Br^{-a}; \quad f(1) = A + B.$$

Thus
All analytic solutions of Theorem 5

Since (1) is a generalization of (2) we can apply Theorem 4. Thus there exist complex constants A, B and real or purely imaginary $a \neq 0$ such that f is given by (11). At first we assume that a is real. Substituting (11) in (2) after some easier calculations we obtain

$$|f(re^{i\theta})|^2 + |f(1)|^2$$

$$= (Ar^a e^{i\theta a} + Br^{-a} e^{-i\theta a})(\overline{Ar}^a e^{-i\theta a} + \overline{Br}^{-a} e^{i\theta a}) + (A + B)(\overline{A} + \overline{B})$$

$$= |A|^2 r^{2a} + |B|^2 r^{-2a} + \overline{AB} e^{2i\theta a} + \overline{AB} e^{-2i\theta a} + |A|^2 + |B|^2 + \overline{AB} + \overline{AB}$$

and

$$|f(e^{i\theta})|^2 + |f(r)|^2$$

$$= (Ar^a e^{i\theta a} + Br^{-a} e^{-i\theta a})(\overline{Ar}^a e^{-i\theta a} + \overline{Br}^{-a} e^{i\theta a}) + (Ar^a + Br^{-a})(\overline{A}r^a + \overline{B}r^{-a})$$

$$= |A|^2 + |B|^2 + \overline{AB} e^{2i\theta a} + \overline{AB} e^{-2i\theta a} + |A|^2 r^{2a} + |B|^2 r^{-2a} + \overline{AB} + \overline{AB}.$$

Now we assume that $a = ic$, where $c \in \mathbb{R}$. Then

$$f(re^{i\theta}) = Ae^{ic\log r + i\theta} + Be^{-ic\log r + i\theta}$$

$$= Ae^{-c} e^{ic\log r} + Be^{c} e^{-ic\log r},$$

$$f(e^{i\theta}) = Ae^{-c} + Be^{c},$$

$$f(r) = Ae^{ic\log r} + Be^{-ic\log r},$$

$$f(1) = A + B.$$

These formulas lead to

$$|f(re^{i\theta})|^2 + |f(1)|^2$$

$$= (Ae^{-c} e^{ic\log r} + Be^{c} e^{-ic\log r})(\overline{A}e^{-c} e^{-ic\log r} + \overline{B}e^{c} e^{ic\log r}) + |A + B|^2$$

$$= |A|^2 e^{-2c\theta} + |B|^2 e^{2c\theta} + \overline{AB} e^{2ic\log r} + ABe^{-2ic\log r}$$

$$+ |A|^2 + |B|^2 + \overline{AB} + \overline{AB}$$

and

$$|f(e^{i\theta})|^2 + |f(r)|^2$$

$$= (Ae^{-c} + Be^{c})(\overline{A}e^{-c} + \overline{B}e^{c})$$

$$+ (Ae^{ic\log r} + Be^{-ic\log r})(\overline{A}e^{-ic\log r} + \overline{B}e^{ic\log r})$$

$$= |A|^2 e^{-2c\theta} + |B|^2 e^{2c\theta} + \overline{AB} + \overline{AB} + |A|^2 + |B|^2$$

$$+ ABe^{2ic\log r} + ABe^{-2ic\log r}.$$

So in both cases the function f given by (11) satisfies (1), as required.

Theorem 5

All analytic solutions of (2) in D are of the form

$$f(z) = Az^a,$$

where A is a complex constant and a is a real one.

Proof. Suppose that f is a non-constant analytic solution of (2) in D. Since (1) is a generalization of (2) we can apply Theorem 4. Thus there exist complex constants A, B and real or purely imaginary $a \neq 0$ such that f is given by (11). At first we assume that a is real. Substituting (11) in (2) after some easy calculations we obtain
\[
\overline{AB} \exp(-2ia\theta) + A\overline{B} \exp(2ia\theta) = \overline{AB} + A\overline{B}
\]
for \(\theta \in (-\delta, \delta) \). Lemma 1 yields \(A = 0 \) or \(B = 0 \) and \(f \) is of the form (14), as required.

Now, we assume that \(a = ic \), where \(c \) is real. Replacing in (2), \(f(z) \) by (11) we infer the equality

\[
|A|^2 \exp(-2c\theta) + |B|^2 \exp(2c\theta) = |A|^2 + |B|^2.
\]
This together with Lemma 2 yields \(A = B = 0 \).

Theorem 6

All analytic solutions of (5) in \(D \) are given by the formula

\[
f(z) = Az^{ic},
\]
where \(A \) is a complex constant and \(c \) is a real one.

Proof. We argue as in the preceding proof. Suppose that \(f \) is a non-constant analytic solution of (5) in \(D \). \(f \) has to be given by (11). Assume that \(a \) is a real constant. Substituting (11) in (5) we get

\[
|A|^2 r^{2a} + |B|^2 r^{-2a} = |A|^2 + |B|^2
\]
for all \(r \in (1-\epsilon, 1+\epsilon) \). From Lemma 2 we infer that \(A = B = 0 \). It remains to consider \(a = ic \), where \(c \) is real. Again substituting (11) in (5) we can obtain

\[
A\overline{B} \exp(2ic \log r) + \overline{A}B \exp(-2ic \log r) = A\overline{B} + \overline{A}B.
\]
The above formula and Lemma 1 yield (15).

References

Institute of Mathematics
Pedagogical University
Podchorzących 2
PL-30-084 Kraków
Poland
E-mail: asmajdor@ap.krakow.pl

Institute of Mathematics
Silesian University of Technology
Kaszubska 23
PL-44-100 Gliwice
Poland
E-mail: w.smajdor@polsl.pl